Ultra-porous titanium oxide scaffold with high compressive strength

نویسندگان

  • Hanna Tiainen
  • S. Petter Lyngstadaas
  • Jan Eirik Ellingsen
  • Håvard J. Haugen
چکیده

Highly porous and well interconnected titanium dioxide (TiO(2)) scaffolds with compressive strength above 2.5 MPa were fabricated without compromising the desired pore architectural characteristics, such as high porosity, appropriate pore size, surface-to-volume ratio, and interconnectivity. Processing parameters and pore architectural characteristics were investigated in order to identify the key processing steps and morphological properties that contributed to the enhanced strength of the scaffolds. Cleaning of the TiO(2) raw powder removed phosphates but introduced sodium into the powder, which was suggested to decrease the slurry stability. Strong correlation was found between compressive strength and both replication times and solid content in the ceramic slurry. Increase in the solid content resulted in more favourable sponge loading, which was achieved due to the more suitable rheological properties of the ceramic slurry. Repeated replication process induced only negligible changes in the pore architectural parameters indicating a reduced flaw size in the scaffold struts. The fabricated TiO(2) scaffolds show great promise as load-bearing bone scaffolds for applications where moderate mechanical support is required.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE EFFECT OF NANO BIOGLASS ON THE FABRICATION OF POROUS TITANIUM SCAFFOLDS

In this study, porous titanium composites containing 5, 10 and 15 wt. % nanobioglass were fabricated by space holder sintering process. The pore morphology and phase constituents of the porous samples were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The mechanical properties were determined by compression test. The porosity of the sintered samples show...

متن کامل

Hydrothermal Fabrication of Highly Porous Titanium Bio-Scaffold with a Load-Bearable Property

Porous titanium (P_Ti) is considered as an effective material for bone scaffold to achieve a stiffness reduction. Herein, biomimetic (bio-)scaffolds were made of sintered P_Ti, which used NaCl as the space holder and had it removed via the hydrothermal method. X-ray diffraction results showed that the subsequent sintering temperature of 1000 °C was the optimized temperature for preparing P_Ti. ...

متن کامل

Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering

Large bone defects and nonunions are serious complications that are caused by extensive trauma or tumour. As traditional therapies fail to repair these critical-sized defects, tissue engineering scaffolds can be used to regenerate the damaged tissue. Highly porous titanium scaffolds, produced by selective laser sintering with mechanical properties in range of trabecular bone (compressive streng...

متن کامل

Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering.

A novel biodegradable nanocomposite porous scaffold comprising a beta-tricalcium phosphate (beta-TCP) matrix and hydroxyl apatite (HA) nanofibers was developed and studied for load-bearing bone tissue engineering. HA nanofibers were prepared with a biomimetic precipitation method. The composite scaffolds were fabricated by a method combining the gel casting and polymer sponge techniques. The ro...

متن کامل

Production of porous Calcium Phosphate (CaP) ceramics with aligned pores using ceramic/camphene-based co-extrusion

BACKGROUND Calcium phosphate (CaP) ceramics are one of the most valuable biomaterials for uses as the bone scaffold owing to their outstanding biocompatability, bioactivity, and biodegradation nature. In particular, these materials with an open porous structure can stimulate bone ingrowth into their 3-dimensionally interconnected pores. However, the creation of pores in bulk materials would ine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2010